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Abstract. The time-dependent potential V ( x  -f(  f ) )  is studied by path integrals. It is shown 
that the problem can be mapped into the static form of the potential plus a linear term 
with a time-dependent coefficient. After the presentation of the general formulation, some 
exactly solvable examples are discussed. A perturbative treatment is also suggested. 

1. Introduction 

Quantisation of time-dependent dynamical systems is an attractive problem of theoreti- 
cal physics. We can classify these systems into two main categories, the first of which 
consists of the quantum mechanical particle motions which are subject to time- 
dependent boundary conditions [ 11. 

Problems of time-dependent potentials with fixed boundary conditions belong to 
the second category. Among them we can mention the quadratic potential with 
time-dependent coefficients [2,3]. This problem has also been studied by path integrals 
~ 4 1 .  

In this paper we study a particular type of time-dependent potential 

V ( X ,  t )  = V(X -f(t)) (1) 

which is obtained by translating the argument of V ( x )  by an arbitrary function f( t ) .  
To solve this problem we transform to new coordinates in which the potential consists 
of two terms: a fixed form of the original potential and a linear term with a time- 
dependent coefficient. Separation of the fixed and the time-dependent parts of the 
potential makes it possible to get exact solutions for some particular examples. I t  also 
permits one to treat the time-dependent term as a perturbation. 

In this paper we will employ the path integration method. Since it deals with 
classical phase space, path integration is much suited to the application of required 
time-dependent canonical transformations, 

2. Formulation of the problem with path integrals 

In this section we will present a general treatment of the moving potential problem of 
equation (1). The probability amplitude for the motion of a particle with mass p, from 
spacetime point x u ,  tu to x h ,  t h  under the influence of potential V ( x ,  t )  can be written 
as a phase-space path integral: 

(2) 
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where the overdot stands for d/dt .  This expression is understood as the limit of the 
usual time-graded formula: 

with 

t ,  = t" t h  = ( n  + 1)& + t o =  t,+i 

and 

x,  = xo xh = x n ~ l .  

In  order to map the problem to a familiar form of a time-independent potential, we 
apply a time-dependent translation to x by x -+ x +f( t) .  By explicitly transforming the 
action we observe that the kinetic energy terms of the resulting Hamiltonian becomes 
( 1 / 2 p ) (  p.; - p i ) '  which suggests a translation of momentum by p.; py + p j  These 
translations in coordinate and  momentum variables can be combined into a time- 
dependent canonical transformation: 

Q = x - f (  t ) P = p ,  - l * f ( t )  (4) 

F.(x,  P, t ) = ( P + I L j . ) ( x - - f ) .  ( 5 )  

generated by 

The Hamiltonian and  the action become 

1 
=, P'+ V ( Q ) + & - $ p f ?  

and 

By the help of (6) and  (71, the amplitude of ( 2 )  can be written as 

( x h ,  th ; xa 9 to = exp { ip  I f h  (xh -fh ) - f a  (xu -fo 111 
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where 

The price paid for removing the translational time dependence of the original potential 
is the introduction of the extra term pfQ, which represents a homogeneous time- 
dependent force. The situation can be compared with the mapping of a time-dependent 
boundary condition problem into the time-dependent harmonic oscillator potential [ 11. 

If the problem can be exactly treated for the static potential V(Q), then we can 
solve the path integration of (9 )  in the form of series by regarding pfQ as a time- 
dependent perturbation. 

Inspecting the result of (9) we notice that, for translations linear or quadratic in 
time, the potential in Q-space is stationary. 

For potentials whose sources are moving with constant acceleration, that is for 

f( t )  = +yt2 y =constant (10) 

equation (8) becomes 

x I 9 Q 9 P  exp [ i 
As an exactly solvable example consider an oscillator potential 

V ( x ,  t )  = + p w 2 ( X - + y t 2 ) 2 .  

For this case the potential in Q-space is 

Inserting the well known Green function formula for the above potential [5] into (1 1) 
we have 
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where T = t h  - t , .  Using the usual expansion of the oscillator Green function in terms 
of the Hermite polynomials [ 5 ]  we obtain the wavefunction for the potential of (12): 

The second and more simple case occurs for 

f ( r )  = ut L; =constant 

in which, as the natural consequence of the Galilean invariance of Schrodinger 
equation, the potential in  Q-space does not acquire any additional term. Then the 
amplitude becomes 

K(xh,  t h ;  xo, 10) 

=exp[-tipu'(t , , -  t , )+ ipu (xh -x , ) ]  

From this formula we conclude that, if the solution of the Schrodinger equation for 
a stationary potential V ( x )  is 4(x, t )  = exp ( iEt )@(x)  the wavefunction for V ( x  - u t )  
is given by 

(18) 

As a specific example for the linear translations we consider a &function potential: 

IL,(X, 1) = exp[-i ( E  + i p u 2 ) t ]  exp(ipL;x)@(x - or ) .  

cl 
V ( x ,  t ) =  - - 6 ( x - v t ) .  

2 P  

For (Y > 0, the potential is attractive and  there exists one bound state. To obtain this 
state we insert the known result for the stationary wavefunction [6] 

into (18) and arrive at 

For a fixed position x>O, and for 2 : >  0, if the time is early enough to satisfy 

t < x / u  

then the wavefunction of (21) is 

whose magnitude increases by exp($avt).  
For later times, i.e. for 

x - v t < O  
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the wavefunction becomes 

+ ~ t e ( x , t ) = ( ~ ) " 2 e x p [ i ( E + i p L . ) 2 1 ]  2 P  2 exp[(q+ipo)  x]  ( 2 3 )  

which decays by the factor exp( - f a u t ) .  
At this point we emphasise that the case given by (16) occurs in many problems 

of electrodynamics involving vector potentials. For example, consider the interaction 
of a light wave of linear polarisation, propagating in the x direction, with an electron 
[ 7 ] .  The light wave can be described by the vector potential 

A, = A ,  =O. 8" A, =- COS( w t  - kx) 
W 

The amplitude for this problem is 

The explicit definition of the above formula can be obtained by obvious generalisation 
of ( 3 )  to three dimensions. By translating the variable p,, as 

ego p ,  +p,  +-cos ( w t  - kx) 
w 

equation ( 2 5 )  can be written as 

K ( X h ,  f h ;  x a ,  f a )  

= 1 9 ' x g 3 p  exp [i 1,; d t  ( p,X+p,y+p,i-  P:+ p: +p5 
2iJ 

Here the functional integrations in the y and z directions are trivial which result in 
fixing py and p- to be the constant momentum components: 

which is of the type that we are interested in. Employing the canonical transformation 
of ( 4 )  with f ( t )  = ( w / k ) t  the potential in Q-space becomes 
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If one of the terms in this potential is negligible (for example, if go<< w or %‘,>>U) 
the corresponding quantum mechanical problem is exactly solvable in terms of the 
Mathieu functions [7]. 

For frequencies depending on time, i.e. for w = w (  t ) ,  the problem becomes compli- 
cated and  the additional linear term ( p / k ) ( & t  + 2 3 ) Q  that (29) would acquire should 
be treated as a perturbation. 

As the final example we wish to remark that our method suggests an  elegant 
procedure, which is alternative to the usual one [4], for the path integration of the 
potential 

V(x, t)  = ax2+ br”x (30) 

with a, b = constant and  n = integer. We first complete the squares and obtain 

where the last term can be integrated out of the action. After translating x by 

b 
2a 

x 3 Q = x +- t”  

we arrive at  a problem in Q-space with potential 

CLb V(Q, t )  = a@+- n(n - 1)t”-’Q. 2a 

Repeating the same procedure in or i ( n  + 1) times for n = even or n = odd, respectively, 
we have a time-independent problem. 

3. Discussion 

We have demonstrated that the potential 

can be mapped into 

which is the static form of the original potential plus a linear term with a time-dependent 
coefficient. One advantage of this mapping is that if the quantum mechanical problem 
for V(Q) is exactly solvable, we can write the solution for the full problem in the 
series form by regarding the time-dependent linear term as a perturbation. In that 
respect our problem closely resembles the time-dependent boundary condition problem 
[ 11, where the original Schrodinger equation is transformed into a time-dependent 
oscillator potential problem in fixed boundaries, which is treated as a perturbation. 

Perturbations can be either performed in the Schrodinger picture as done in [l], 
or in the path integral formulation. A brief outline of the path integral approach is 
as follows. 
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We rewrite (9) by expanding the perturbative term of the action into the power series: 

with b, a standing for the final and initial spacetime points. After the familiar 
manipulations we arrive at [ 5 ] :  

K ( b ,  a ) = K , ( b , a ) + K ' " ( b , a ) + K " ' ( b , a ) +  . . .  ( 3 3 )  

where 

K,(b,a)= 9 Q 9 P e x p  J 
is the propagator for potential V( Q),  whereas the following terms represent propaga- 
tions with several number of interactions via the perturbative term. For example, 

is the propagator from point Q to b with one scattering at the spacetime point 
Q , ,  t , .  From one interaction point to the next one the system propagates by the Green 
function of the static potential V( Q). Examples of the perturbative path integrations 
can be found in [ 5 ] ,  and in the recent formulation of QED in terms of the classical 
particle trajectories [8]. 

Finally, we wish to point out that there exist some simpler and exactly solvable 
cases. (i) When f ( t )  is a linear or quadratic function of t the potentials in Q-space 
are time independent. (ii) The oscillator potential problem is exactly solvable for all 
forms o f f (  t )  since the exact solutions of V = x 2 +  g (  t )x  are available with g( t )  being 
an arbitrary function of time [ 5 ] .  
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